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A TEST PROBLEM FOR OUTFLOW BOUNDARY 

STEP 
CONDITIONS-FLOW OVER A BACKWARD-FACING 

DAVID K. GARTLING 
Fluid and Thermal Sciences Department. Sandia Notional Laboratories. Albuquerque, NM 87185, U.S.A. 

SUMMARY 
A numerical solution for steady incompressible flow over a two-dimensional backward-facing step is 
developed using a Galerkin-based finite element method. The Reynolds number for the simulations is 800. 
Computations are performed on an extended channel length to minimize the effect of the outflow boundary 
on the upstream recirculation zones. A thorough mesh refinement study is performed to validate the results. 
Extensive profile data at several channel locations are provided to anow future testing and evaluation of 
outflow boundary conditions. 
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1. INTRODUCTION 

The selection of an outflow boundary condition that allows an accurate numerical simulation of a 
flow problem to be achieved continues to be an area of uncertainty and debate. The 
Navier-Stokes equations provide a widely applicable mathematical description for the analysis of 
fluid motion. Individual flow problems are differentiated by specific choices of fluid properties, 
the geometry of interest and a suitable set of boundary and initial conditions for the flow 
variables. Generally, the boundary conditions are the most difficult to define (precisely) since it is 
difficult to isolate a fluid system from the effects of its environment. This is particularly true for 
uncontained flows, which require some rational specification of how the fluid enters and leaves 
the domain of interest. 

The primary function of any outflow boundary condition used in a numerical simulation is to 
allow the flow variables to leave the computational grid passively without perturbing the 
upstream flow. Optimally, such a boundary condition would be applicable at any downstream 
location so that the extent of the computational domain could be minimized. The interest in 
developing better outflow boundary conditions remains high as seen by the success of the 
Minisymposium on Outflow Boundary Conditions held at the University College of Swansea, 
U.K. in July 1989. As part of that forum a series of standard problems were defined that could be 
used to test (quantitatively) various outflow specifications. In each case the standard problem was 
to be solved on a computational mesh of sufficient refinement and streamwise extent that it could 
be deemed a ‘true’ solution to the boundary value problem. The present paper is a report on one 
of those standard problems consisting of steady incompressible flow over a backward-facing step. 
It is the intention of this work to provide relevant data in a format that can be used for future 
testing and evaluation of outflow boundary conditions. 
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The paper is organized as follows. Section 2 describes the problem geometry and flow 
parameters of interest. Sections 3 and 4 outline the numerical method and computational models 
used for the simulations. Section 4 provides a variety of results, in both tabular and graphical 
form, that define the flow and demonstrate that the numerical results are converged and valid. 

2. BACKWARD-FACING STEP 

The problem involving a steady viscous incompressible flow over an isothermal two-dimensional 
backward-facing step is a standard test problem that has been addressed by numerous authors 
using a wide variety of numerical methods. Since the problem defined here is intended to provide 
a basis for the comparison of various outflow boundary conditions, the standard step geometry 
was simplified by excluding the channel upstream of the step. As shown in Figure 1, the 
downstream channel was defined to have unit height H with a step height and upstream inlet 
region set equally to H/2. For purposes of generating the baseline solution to this problem, the 
downstream channel length was taken as L = 30 H, i.e. the channel extends 60 step heights from 
the inlet. The co-ordinate system for describing locations in the channel is centred at the step 
corner with the x-co-ordinate being defined as positive in the downstream direction and the y-co- 
ordinate across the channel. 

The boundary conditions for the step geometry included the usual no-slip velocity specification 
for all solid surfaces (see Figure 1). The inlet velocity field was specified as a parallel flow with a 
parabolic horizontal component given by u(y) = 24~40.5 - y) for 0 < y <0*5. This produces a 
maximum inflow velocity of urn,,= 1-5 and an average inflow velocity of uavB= 1.0. The outflow 
boundary condition assumed a parallel flow and a constant total stress normal to the boundary. 
The normal stress condition translates into - P + 2p au/& being specified as a constant, where P 
is the pressure, p the fluid viscosity and u the axial velocity component. For these computations 
the constant was set to zero, which in essence sets the outflow pressure to zero since the term 
p &/ax is negligible at this streamwise station. After a solution had been obtained, the pressure 
field was adjusted such that the pressure level was zero at the step corner (x=O, y=O) .  

For convenience in setting the required flow conditions, the non-dimensional form of the 
Navier-Stokes equations was employed. For a fixed geometry this results in the Reynolds 
number being the only non-dimensional parameter of interest; the Reynolds number is defined by 
Re = usvp H / v .  To provide the required baseline solution at Re = 800, the kinematic viscosity v was 
adjusted in concert with the specified uevp and H. The Reynolds number and problem definition 
used here follow Armaly et a/.,' which will allow the comparison of some computed results in a 
subsequent section. 
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Figure 1. Backward-facing step geometry with channel dimensions and boundary conditions 



OUTFLOW BOUNDARY CONDITIONS 955 

3. NUMERICAL METHOD 

The numerical solution to the step flow was carried out using the code NACHOS 11,’ which is 
based on a Galerkin finite element formulation. Verification of selected results was performed 
using the FIDAP p r ~ g r a m , ~  which is also based on the finite element method. In all cases the 
primitive variable form of the Navier-Stokes equations was employed with a mixed finite element 
approximation used to represent the velocity components and pressure in the momentum 
equations and incompressibility constraint. The quadrilateral finite element used for all reported 
computations contained a nine-node biquadratic Lagrange interpolation for the velocity com- 
ponents; the pressure approximation was linear and discontinuous between elements. For 
comparison purposes, results were also obtained using the nine-node velocity, four-node con- 
tinuous bilinear pressure element. No significant differences were seen between the solutions 
using the two element types, though the element mass balance for the linear pressure element was 
superior as anticipated. 

The backward step flow was formulated and solved as a steady flow problem. In order to 
obtain a solution for the specified Re of 800, a series of steady state solutions were obtained at 
intermediate Re-values of 200,400 and 6OO.Zeroth-order continuation was used to advance from 
one Re solution to another. The indicated sequence of steps in Re does not represent an optimized 
path to the final required state but was selected for convenience and with a view towards 
comparing solutions at other standard conditions. The continuation procedure was employed for 
all solutions except those obtained on the most refined computational mesh. In order to expedite 
these large mesh computations, solution fields from converged, coarser mesh solutions were 
interpolated to the refined mesh4 to provide a good initial estimate of the solution. 

At each Re, full Newton iteration was used to obtain a converged solution for the non-linear 
algebraic equations. A convergence tolerance of 0.1 % on the normalized change in the solution 
vectors between iterations was used to terminate the iteration scheme; typically, less than eight 
iterations were needed at each Re to obtain converged solutions. A direct solver employing the 
frontal technique for Gauss elimination’ was used to solve the unsymmetric matrix problem at 
each Newton iteration. 

In addition to the primary velocity and pressure variables, a number of derived variables were 
computed as part of the benchmark. The streamfunction was computed from a line integral of the 
velocity components taken between nodal points along element edges. This procedure also 
provided a check on the divergence of the velocity field within each element; the maximum error 
in the streamfunction (velocity divergence) around any element was - To maximize the 
accuracy in the variables obtained through differentiation (e.g. velocity gradients, stress compon- 
ents and vorticity), all velocity derivatives were evaluated at the 2 x 2 Gauss points within each 
element. Gauss point values were subsequently projected to the corner nodes of the element via a 
bilinear extrapolation and averaged between adjacent elements to obtain a continuous field. For 
plotting purposes, midside node data were linearly interpolated from corner node data. 

4. COMPUTATIONAL MODELS 

In an effort to demonstrate that the reported solutions are converged in the mesh refinement 
sense, computations were performed on five meshes of (almost) uniformly increasing refinement. 
For convenience the meshes are labelled A-E and had finite element discretizations ranging from 
720 to 32000 elements. Specific details of each mesh are given in Table I. 

The rectangular channel downstream of the step was divided into two regions for purposes of 
mesh generation. In the upstream region O< x < 15 the mesh was uniformly distributed across the 
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Table I. Mesh characteristics 
~~ 

Element 
Number of Number of Number of size$ Matrix Matrix solution 

Mesh elements nodes* unknowns? (Ax, Ay) front width time§ (s) 

A 720 3 133 8 426 0166 61 12.4 

B 2000 8421 22 842 0.100 77 63.8 

C 8000 32 841 89 682 0.050 117 720.0 

D 18000 73 261 200 522 003 3 157 3050 1 

E 32000 129681 355 362 0.025 197 95 15.5 

(6 x 120) 

(10 x 200) 

(20 x 400) 

(30 x 600) 

(40 x 800) 

* Nine nodes per element. 
t Biquadiatic velocity, linear discontinuous pressure element. 
$ Length of element side for uniform grid region. 
8 Time per iteration, includes matrix assembly, triangularization and backsubstitution. 

1 I I 

0.0 10 2.0 8.0 

X AXIS 

Figure 2. Finite element mesh distribution, mesh C 

channel and in the streamwise direction. For the region 15 < x < 30 the mesh was uniform across 
the channel but smoothly graded in the flow direction. The grading factor was two, so that 
elements near x = 30 were approximately twice the length of elements near x = 15. For each mesh 
three-quarters of the total number of elements were located in the upstream region. A schematic 
of mesh C is shown in Figure 2. 

As shown in Table I, meshes B-E represent uniform refinements in both the cross-channel and 
downstream directions. Mesh A is not a uniform coarsening of mesh B owing to the need to retain 
an integer number of elements across the inflow section of the upstream boundary for the purpose 
of accurate boundary condition specification. However, these mesh configurations do correspond 
to almost an order-of-magnitude change in mesh size, which is sufficient to demonstrate 
convergence. 

Included in Table I are some measures of problem size and performance of the finite element 
code. Note that all problems were run on a single processor of a CRAY X-MP/416 using a 
FORTRAN 77 compiler and the Cray Time Sharing System (CTSS). The code makes extensive 
use of the 256 Mword solid state disc (SSD) that is attached to the mainframe. The programme 
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also employs a dynamic memory manager that increases and decreases memory allocation on 
request. As a result, all five of the indicated meshes used different amounts of central memory and 
had different 1/0 patterns. 

5. RESULTS 

The results of the computations for the backward-facing step will be described in two subsections. 
In the first subsection, specific solution quantities such as vortex location and strength, separation 
length, etc. will be discussed as a function of mesh refinement. Having established that solutions 
on a particular mesh are converged and accurate, a standard set of cross-channel and streamwise 
profiles will be discussed for a variety of dependent variables. These quantities will be supplied at 
stations that are suitable for evaluating various outflow boundary conditions. 

5.1. Mesh refinement results 

The basic character of the backward-facing step flow at Re=800 is well known and is 
illustrated in the contour plots of Figures 3-6. Note that these plots are to full scale but only show 
the first 20 step heights of the channel since few phenomena of interest occur downstream of this 
point. The flow separates at the step corner and forms a large recirculation eddy with a 
reattachment point on the lower wall approximately 12 step heights downstream. A second, 
stronger eddy forms on the upper wall beginning approximately 10 step heights downstream and 
terminating at 21 step heights. The streamfunction contours in Figure 3 illustrate the main 
features of the separated flow while the pressure contours in Figure 4 show clearly the pres- 
sure gradients associated with the various points of separation and reattachment. Note that 
the vorticity shown in Figure 5 is defined in the standard way as the curl of the velocity 
(i.e. o = au/ax - au/ay); the fluid speed in Figure 6 is simply the magnitude of the velocity. After 
reattachment of the upper wall eddy, the flow slowly recovers towards a fully developed Poiseuille 
flow. The return to a fully developed flow is almost complete in the channel length of 60 step 
heights used in these computations. Figures 7 and 8 show the pressure and shear stress 
distributions on the upper and lower walls. Note that near the exit plane the pressure closely 
approaches a constant slope consistent with a fully developed flow and the shear stress reaches a 
nearly constant value. The maximum outflow velocity is within 1 YO of a fully developed parabolic 

BACKWARD FACING STEP - RE = 800 
STREAM FUNCTION 

I I I I I I 1 I I 
0.0 1.0 2.0 3.0 4.0 6.0 e.0 7.0 0.0 9.0 10.0 

X AXIS 

Figure 3. Streamfunction contours. Level values are -0030, -0025, -0.020, -0.015, -0.010, -0~005,0~0,0~050, 0.100, 
0.150,0.200, 0250,0~300,0350,0~400, 0*450,0490, 0500, 0302,0504 
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0 

BACKWARD FACING STEP - RE = 800 
PRESSURE 

I I I I I , 1 a.o 4.0 s.0 6.0 7.0 8.0 0.0 M.0 0.0 1.0 2.0 

X AXIS 

Figure 4. Pressure contours. Level values are 0.01, 0.02, 003, 0.04, 005, OWJ, 0.07, 0.08, 0.09, 010, 012, 0.14, 0.16, 018, 
0.20, 0.22.024 

BACKWARD FACING STEP - RE 
VORTlClTY 

800 

0 

BACKWARD FA-G STEP - RE= 800 
FLUID SPEED 

t T I  0.0 1.0 2.0 3.0 4.0 6.0 ao ' I  7.0 ' I  8.0 ' 0.0 I ,  10.0 ' 
X AXIS 

Figure 6. Contours of fluid speed. Level values are 0.05, 0.10, 015, 020, 0.40, 060, 0.80, 1.00, 1.20, 1.40 

profile. This evidence supports the conclusion that the computational domain is of sufficient 
length to provide an accurate solution for regions close to the step. 

Listed in Tables I1 and 111 are specific details regarding the two separation zones known to be 
present in the channel. These quantities are listed versus mesh configuration and clearly show the 
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BACKWARD FACING STEP - RE = 800 

BACKWARD FACING STEP - RE = 800 

0 10 *I PO 16 80 
DISTANCE 

Figure 8. Shear stress profiles along upper and lower channel walls 

rapid approach to mesh-independent values. The mesh B results are within 1.5% of the most 
refined mesh quantities, demonstrating that quite accurate solutions can be obtained on rather 
modest refinements. The vorticity at the centre of each vortex shows the most variation between 
meshes. This is to be expected for this formulation since it is a derivative quantity and of lower- 
order accuracy than the primary fields. Note that the quantities associated with the vortex centres 
were taken directly from values computed at the node points. The separation and reattachment 
points were located from the wall shear stress; interpolation between nodal point shear stress 
values was used to locate the zero-shear-stress point. The values listed in Tables I1 and I11 were all 
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Table 11. Lower wall eddy 

Vortex Stream function at 
centre vortex centre, 

Mesh (4 Y )  * 
A (3~000, - 0.167) -0.0335 
B (3300, -0200) -0.0342 
C (3.350, -0.200) - 0.0342 
D (3.350, -0.200) - 0.0342 
E (3.350, -0.200) -00342 

Vorticity at 
vortex centre, 

u 

-2.518 
- 2.249 
- 2.285 
- 2.283 
- 2.283 

Length of 
recirculation 

region, 
Ll 

5.8 1 
6.07 
6-09 
6.10 
6.10 

Table 111. Upper wall eddy 

Length of 
Vortex Streamfunction Vorticity at Separation Reattachment recirculation 
centre at vortex vortex centre, point point region, 

Mesh ( x , Y )  centre, $ W ( x ,  Y )  (x, Y )  LU 

A (7500,0333) 05071 0.959 (4.79, 050) (10-48, 050) 569 

C (7.400, 0.300) 0.5064 1.321 (4.85, 0.50) (10.48, 050) 5.63 
D (7-400, 0.300) 0.5064 1-324 (4-85, 050) (1048, 0.50) 5-63 
E (7.400,0300) 05064 1.322 (4.85, 0.50) (1048, 0.50) 5.63 

B (7.400, 0.300) 05064 1.319 (4.83, 0.50) (10.47, 0.50) 5.64 

obtained from the NACHOS I1 programme; comparison of mesh C and D results with quantities 
obtained from FIDAP agreed within the significant figures shown in the table. 

The flow statistics listed in the tables can, with some caution, be compared with results from 
other experimental and numerical investigations. Armaly et al.' measured separation and 
reattachment points for a wide range of Reynolds numbers including the case of Re=800. 
Unfortunately, three-dimensional effects in the channel appear to be significant for Re > 400, 
making comparisons with two-dimensional simulations less than satisfactory. Data from Refer- 
ence 1 suggest that the lower wall separation zone has a dimensional length of LI x 7.2; the upper 
wall separation region has a length L, ~ 4 . 1  with separation beginning at x x 5.3. Comparison of 
these values with the results in Tables I1 and I11 clearly shows the discrepancies between 
experiment and numerical predictions. In comparing the present results with other two-dimen- 
sional computations, somewhat better agreement is realized, especially with respect to the lower 
wall separation zone. Kim and MoinS predicted separation lengths of LI x 6.0 and L, z 5.75 using 
a finite difference method. Sohn6 used the FIDAP code to predict L , ~ 5 . 8  and L , ~ 4 * 7 .  
Exceptionally accurate quantities are difficult to obtain from these investigations since no tabular 
results were given; graphical results were optically scanned and interpolated to produce the cited 
quantities. Note that in both of these cases relatively modest mesh refinements were used on 
channel geometries that extended only 30 step heights downstream of the step. In view of the 
good convergence behaviour shown in Tables I1 and 111, the use of an extended channel length 
and the exceptional agreement between two different computer codes, the present results are 
judged to be an accurate representation of the two-dimensional step flow. Unfortunately, 
experimental verification of this claim cannot be obtained since a strictly two-dimensional flow at 
these conditions apparently does not exist. 
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Figure 9. Horizontal velocity profiles across the channel at x=7  and 15, Backward Facing Step-Re=800 
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Figure 10. Vertical velocity profiles across the channel at x = 7  and 15, Backward Facing Step-Re=800 

5.2. Cross-channel profiles 

In order to provide data for the evaluation and/or development of various outflow boundary 
conditions, cross-channel profiles of a variety of quantities are provided in Tables IV and V; some 
of these data are also illustrated in Figures 9-14. The profiles are located at 14 (x=7) and 30 
(x = 15) step heights downstream of the step. It is evident from the tabulated data and the plots 
that there is considerable cross-channel variation in many quantities, making their utility as a 
potential boundary condition questionable. The streamwise gradients of velocity (Figure 13) are 
generally ‘small’ but are not really zero as often assumed in some boundary specifications. The 
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Figure 11. Pressure profiles across the channel at x = 7  and IS,  Backward Facing Step-Re=800 
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Figure 12. Vorticity profiles across the channel at x = 7  and 15, Backward Facing Step-Re=800 

total normal stress quantities involving the pressure and streamwise velocity gradient (Figure 14) 
show an almost constant value, especially at the x =  15 location. The normal stress is essentially 
equal to the pressure since both p and au/ax are small. A constant normal stress condition is 
typically used in finite element methods for outflow boundaries and these results show why that 
choice can be effective. 

The variation of some of the variables in the vicinity of the step is also of interest owing to their 
singular behaviour at this location. Shown in Figures 15 and 16 are cross-channel profiles of the 
pressure and vorticity taken at the inlet plane, x = 0. Results for two different mesh refinements 
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Figure 13. Horizontal velocity gradient across the channel at x =  7 and 15, Backward Facing Step-Re= 800 
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Figure 14. Total normal stress across the channel at x = 7  and 15, Backward Facing Step-Re=800 

are shown and it is clear that the resolution of the sharp gradients (slopes) at the corner is less 
than satisfactory. At y = 0 the slope of each curve varies directly with the mesh spacing, which is 
suggestive of a singular behaviour. However, at relatively small distances from the corner the 
solutions are well behaved and the vorticity becomes identical for the two mesh refinements. Note 
that the large apparent discrepancy in the pressure is exaggerated by the scale of the plot. The 
pressure levels between the two simulations differ by 0.005 (with a pressure maximum in the field 
of P,,,,,=0251), which is less than 2%. This result also emphasizes the fact that the pressure is a 
very sensitive variable in an incompressible flow. 
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Figure 15. Pressure profiles across the channel at the inlet plane for two mesh refinements, Backward Facing 
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Figure 16. Vorticity profiles across the channel at the inlet plane for two mesh refinements, Backward Facing 
Step-Re=800 

6. CONCLUSIONS 

The work reported here is an attempt to provide a fully converged and accurate solution to a 
standard test problem. The backward-facing step flow was selected as a test problem since it is 
one of the simplest geometric cases that provides an interesting, non-trivial flow that is a good test 
for outflow boundary conditions. The separation zones downstream of the step provide a 
sensitive measure of the quality of the outflow condition and how its location along the channel 
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influences the solution. Sufficient data have been reported to allow outflow boundary conditions 
to be tested and compared to this benchmark. Even without the development of new boundary 
conditions it is instructive to examine the variation of a variety of variables across the channel 
and assess their potential as boundary conditions. 
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